PREMER: Parallel Reverse Engineering of Biological Networks with Information Theory
نویسندگان
چکیده
A common approach for reverse engineering biological networks from data is to deduce the existence of interactions among nodes from information theoretic measures. Estimating these quantities in a multidimensional space is computationally demanding for large datasets. This hampers the application of elaborate algorithms – which are crucial for discarding spurious interactions and determining causal relationships – to large-scale network inference problems. To alleviate this issue we have developed PREMER, a software tool which can automatically run in parallel and sequential environments, thanks to its implementation of OpenMP directives. It recovers network topology and estimates the strength and causality of interactions using information theoretic criteria, and allowing the incorporation of prior knowledge. A preprocessing module takes care of imputing missing data and correcting outliers if needed. PREMER (https://sites.google.com/site/premertoolbox/) runs on Windows, Linux and OSX, it is implemented in Matlab/Octave and Fortran 90, and it does not require any commercial software.
منابع مشابه
Genetic Network Analysis in Light of Massively Parallel Biological Data Acquisition
Complementary DNA microarray and high density oligonucleotide arrays opened the opportunity for massively parallel biological data acquisition. Application of these technologies will shift the emphasis in biological research from primary data generation to complex quantitative data analysis. Reverse engineering of time-dependent gene-expression matrices is amongst the first complex tools to be ...
متن کاملA Parallel Implementation of the Network Identification by Multiple Regression (NIR) Algorithm to Reverse-Engineer Regulatory Gene Networks
The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computation...
متن کاملComparison of MLP NN Approach with PCA and ICA for Extraction of Hidden Regulatory Signals in Biological Networks
The biologists now face with the masses of high dimensional datasets generated from various high-throughput technologies, which are outputs of complex inter-connected biological networks at different levels driven by a number of hidden regulatory signals. So far, many computational and statistical methods such as PCA and ICA have been employed for computing low-dimensional or hidden represe...
متن کاملSurvey on Planar Drawing of Clustered Graphs
In recent years, there has been great interest in graph drawing to express relational information and applications range from CASE tools, reverse engineering, idea organization, and software design. However, as the graphs to be visualized become more and more complex, extended structured graph variations are needed. Clustered graphs are graphs with recursive clustering structures. The possible ...
متن کاملSystems Biology: The Role of Engineering in the Reverse Engineering of Biological Signaling
One of the principle tasks of systems biology has been the reverse engineering of signaling networks. Because of the striking similarities to engineering systems, a number of analysis and design tools from engineering disciplines have been used in this process. This review looks at several examples including the analysis of homeostasis using control theory, the attenuation of noise using signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016